logo
hrrps://www.ijs.si


Para teče iz uparjalnika v parno turbino, kjer se razpenja, opravlja delo in vrti turbino, ki poganja generator.

Parna turbina je kolo z lopaticami, na katere pihajo zelo hitri curki pare, ki vrtijo kolo. Ti curki nastanejo v odprtini posebne oblike, ki ji pravimo šoba, v kateri se energija pare spreminja v hitrostno energijo – nastane curek pare. Parna turbina je po načinu delovanja podobna vodni turbini.

V bivši Sovjetski zvezi so gradili predvsem dva tipa jedrskih elektrarn.

Njihovi tlačnovodni reaktorji, poimenovani VVER, ki so jih zgradili največ in izvažali tudi v takratne države Vzhodnega bloka, so po svojih fizikalnih zasnovah enaki tlačnovodnim reaktorjem, ki so jih razvili Američani (tudi Jedrska elektrarna Krško je tega tipa). S temi reaktorji ni bilo varnostnih problemov. Černobilski tip reaktorjev pa je fizikalno zasnovan bistveno drugače zato, da je lahko prvotno obratoval na gorivo iz neobogatenega urana (kasneje, v času černobilske nesreče, so ti reaktorji obratovalni na nizko obogaten uran). Iz teh fizikalnih zasnov pa je izvirala lastnost reaktorja, da se je v nekaterih okoliščinah lahko neobvladljivo povečala njegova moč, kar je privedlo do černobilske nesreče. Po nesreči so povečali obogatitev goriva in odpravili to veliko pomanjkljivost projekta. Poleg fizikalnih razlik pa obstajajo tudi velike razlike v izvedbi varnostnih sistemov.

Černobilski tip reaktorja npr. nima zadrževalnega hrama – posebne zelo odporne zgradbe, v kateri je nameščen jedrski del elektrarne in preprečuje sproščanje radioaktivnih snovi v okolje.

V černobilskem reaktorju se je zaradi posebnosti njegove zasnove lahko nenadzorovano povečala moč. Jedrske elektrarna v Krškem ima drugačen tip reaktorja, zato podobna nesreča ni mogoča. Poleg tega elektrarna v Černobilu ni imela zadrževalnega hrama, ki v primeru nesreče preprečuje uhajanje radioaktivnih snovi v okolje.
več o Jedrski nesreči v Černobilu
(glej tudi Černobil, pdf, 235 KB)

S pregradami (običajno navajamo 3) mislimo na fizične pregrade, ki bi jih morale radioaktivne snovi po vrsti “premagati”, da bi iz jedrskega goriva prodrle v okolje:

  1. Srajčke gorivnih elementov so cevke iz zelo odporne kovine (zlitine cirkonija), v katerih so neprodušno zavarjene tabletke jedrskega goriva (obogatenega urana v obliki uranovega dioksida).
  2. Hladilni sistem reaktorja je izoliran in nadzorovan sistem (v celoti izdelan iz nerjavnega jekla), v katerem kroži hladilna voda pod tlakom.
  3. Zadrževalni hram je neprodušna zgradba okrog celega jedrskega dela elektrarne, ki ostane tesna tudi ob morebitni poškodbi na jedrskem delu elektrarne.

(glej tudi Jedrska varnost, pdf, 254 KB)

Jedrska elektrarna Krško je po svojem načinu delovanja podobna termoelektrarni, pri kateri pa toploto za uparjanje vode namesto iz zgorevanja premoga (oz. nafte ali plina) dobimo iz jedrskega reaktorja. V bistvu sestavljata jedrsko elektrarno dva glavna dela. “Jedrski” del elektrarne je izoliran sistem, podoben centralni kurjavi, v katerem kroži voda in prenaša toploto iz reaktorja v uparjalnika. To sta toplotna menjalnika, v katerih toplota reaktorske vode (primarne vode) greje in uparja sekundarno vodo. Uparjalnika sta torej parna kotla, ki dajeta paro za delovanje “klasičnega” dela elektrarne. Ta je enak kot pri termoelektrarni: para poganja turbino z generatorjem, izrabljena para se po izhodu iz turbine v kondenzatorju, ki ga hladi voda iz Save, vtekočini (kondenzira) ter s pomočjo črpalk teče spet v uparjalnika.

(glej tudi Shema jedrske elektrarne Krško, pdf, 1MB)

Zadrževalni hram je kupolasta zgradba, v kateri je celoten “jedrski” del jedrske elektrarne. V bistvu sta to dve kupolasti zgradbi – “lupini”, ena znotraj druge. Notranja lupina je zvarjena iz jeklenih plošč debeline skoraj 4 cm, visoka okrog 70 m in ima premer okrog 40 m. Namen notranje lupine je, da brez puščanja vzdrži povišanje tlaka znotraj lupine zaradi morebitne poškodbe na jedrskem delu elektrarne. Tesnost te lupine občasno preverjajo tako, da v njej s kompresorji povečajo tlak zraka in merijo, če pušča. Zunanja lupina je izdelana iz železo-betona debeline okrog 0,75 m. To pomeni, da so v betonu zalite gosto razporejene jeklene palice, ki dajejo konstrukciji izredno trdnost. Namen betonske lupine je, da ščiti notranjo, jekleno lupino pred vremenskimi vplivi in zunanjimi dogodki. Prostor med obema lupinama je mogoče med nesrečo vzdrževati na tlaku, ki je nižji od atmosferskega. S tem bi preprečili sproščanje radioaktivnih snovi, ki bi jih morebiti prepuščala jeklena lupina, v okolje.

(glej tudi vprašanje  B075 – Kaj so pregrade v jedrski elektrarni? in Shema jedrske elektrarne Krško, pdf, 190 KB)

Jedrski reaktor v Krškem spada med tlačnovodne reaktorje, ki so v svetu najpogostejši (ima ga več kot polovica od 441 jedrskih elektrarn v svetu). Ime reaktorja pomeni, da ga hladi voda, ki je pod tako visokim tlakom, da v reaktorju ne zavre. Voda ima poleg hlajenja istočasno še vlogo moderatorja, to je snovi, ki je potrebna za upočasnjevanje (moderiranje) nevtronov. Verižno reakcijo, ki poteka v reaktorju (cepitev jeder urana 235, ob kateri se sprostijo nevtroni, ki spet cepijo nova jedra urana 235) lahko namreč vzdržujejo le počasni nevtroni. Nevtroni, ki se sprostijo ob cepitvi, so zelo hitri (imajo visoko energijo), upočasnijo pa se s trki ob jedra vodikovih atomov (protone) v vodi. Reaktor je del zaprtega sistema, ki je podoben centralni kurjavi. Skozi reaktor (peč centralne kurjave) kroži voda, ki prenaša toploto v toplotna menjalnika (uparjalnika), ohlajena voda pa se vrača v reaktor.

(glej tudi vprašanje B074 – Kako deluje jedrska elektrarna Krško? in Shema jedrske elektrarne Krško, pdf, 1MB)

Izrabljeni gorivni elementi (včasih imenovani tudi izrabljeno jedrsko gorivo ali visoko radioaktivni odpadki) so shranjeni v bazenu za izrabljeno gorivo. V bazenu so stojala iz nerjavnega jekla, v katera so vloženi izrabljeni gorivni elementi. Med stojali so nameščene plošče iz zlitine nerjavnega jekla in bora (približno 2 %), v vodi v bazenu pa je raztopljena borova kislina (približno 2500 ppm bora). Bor je zelo močan absorber nevtronov in zagotavlja, da v bazenu ni mogoč pojav kritičnosti. Nerjavna stojala in plošče iz boriranega nerjavnega jekla imajo praktično neomejeno življenjsko dobo (bistveno daljšo od življenjske dobe elektrarne).

(glej tudi Remont v jedrski elektrarni Krško, pdf, 435 KB in Ravnanje z visoko radioaktivnimi odpadki, pdf, 301 KB)

Zgodovina Nuklearne elektrarne Krško:
  • 1970 Začetek priprav na gradnjo, sporazum o gradnji med Slovenijo in Hrvaško
  • April 1971 Razpis mednarodnega natečaja za gradnjo NEK
  • Avgust 1974 Podpis glavne pogodbe z družbo Westinghouse
  • Februar 1975 Začetek izkopov in gradbenih del na gradbišču
  • Oktober 1976 Zaključek montaže reaktorske zgradbe
  • April 1978 Zaključek montaže uparjalnikov in reaktorske posode
  • November 1979 Zaključek glavnega dela tlačnih preizkusov
  • Oktober 1980 Zaključena dobava goriva
  • November 1980 Prvič doseženi nominalni parametri tlaka in temperature v primarnem krogu
  • Maj 1981 Gorivo vloženo v reaktorsko posodo
  • September 1981 Prvič dosežena samovzdrževalna verižna reakcija
  • Oktober 1981 Sinhronizacija generatorja na omrežje – NEK odda prve kilovate
  • Februar 1982 100% moč elektrarne
  • Avgust 1982 Začetek obratovanja s polno močjo
  • Februar 1984 Izdaja dovoljenja za začetek rednega obratovanja
  • Pomlad 2000 Zamenjava uparjalnikov in posodobljenje NEK